Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates.
نویسندگان
چکیده
Bioflocculant-producing bacteria were isolated from activated sludge of a wastewater treatment plant located in Durban, South Africa, and identified using standard biochemical tests as well as the analysis of their 16S rRNA gene sequences. The bioflocculants produced by these organisms were ethanol precipitated, purified using 2% (w/v) cetylpyridinium chloride solution and evaluated for removal of wastewater dyes under different pH, temperature and nutritional conditions. Bioflocculants from these indigenous bacteria were very effective for decolourizing the different dyes tested in this study, with a removal rate of up to 97.04%. The decolourization efficiency was largely influenced by the type of dye, pH, temperature, and flocculant concentration. A pH of 7 was found to be optimum for the removal of both whale and mediblue dyes, while the optimum pH for fawn and mixed dye removal was found to be between 9 and 10. Optimum temperature for whale and mediblue dye removal was 35 °C, and that for fawn and mixed dye varied between 40–45 °C and 35–40 °C, respectively. These bacterial bioflocculants may provide an economical and cleaner alternative to replace or supplement present treatment processes for the removal of dyes from wastewater effluents, since they are biodegradable and easily sustainable.
منابع مشابه
Color Removal from Simulated Textile Effluents Using Clean Electrocoagulation Technique
The present work was directed toward the successful ability of electerocoagulation to remove color from synthetic and simulated textile effluent by aluminum/iron electrodes. Two representative reactive dyes were selected for the synthetic dye system, a black dye alone and mixed dye (black, blue, red, 1:1:1 vol/vol). Several important operating parameters such as electrode material, initial pH(3...
متن کاملTextile Wastewater Treatment by Electrocoagulation Process using Aluminum Electrodes
Background and purpose: Textile industries are among the most polluting industries regarding the volume and the complexity of treatment of its effluents discharge. This study investigated the efficiency of electrocoagulation process using aluminum electrodes in basic red 18 dye removal from aqueous solutions. Materials and Methods: This study was performed in a bipolar batch reactor with ...
متن کاملBioremediation of Textile Wastewater Dyes using Local Bacterial Isolates
Rapid industrialization and urbanization results in the discharge of large amounts of waste to the environment, which in turn creates more pollution (Senan and Abraham, 2004). Synthetic dyes are extensively used in textile dyeing, paper printing, color photography, pharmaceutical, food, cosmetics and other industries. During textile dyeing, the amount of dye lost in effluent is dependent upon t...
متن کاملBioremediation of Textile Dyes Wastewater: Potential of Bacterial Isolates from a Mining Soils and Wetlands
New bacteria that was provided from contaminated soils surrounding the coal, aluminum, salt mines and wetland separated, synthesized and characterized. The achievements show that this soils and waters have five disposed bacteria consist of Microbacterium SP, Micrococcaceae Bacterium, Planomicrobium SP, Brevndimonas Aurantiaca and Halomonas SP. Secondly, the result of the potential of remova...
متن کاملAssessment of effective operational parameters on dyeing wastewater treatment by electrocoagulation process
A wide range of chemicals and dyes are being used in textile industry, and are often found in the wastewater produced. This study attempts to investigate the reduction of COD, TSS, and dye in effluents from the dyeing and washing unit of textile industry, using electrocoagulation process. The reactor is equipped with 10 iron electrodes, connected to a direct current (DC) source in a monopolar e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 17 12 شماره
صفحات -
تاریخ انتشار 2012